Abstract

Histamine induces chemotaxis of mast cells through the histamine H4 receptor. This involves the activation of small GTPases, Rac1 and Rac2, downstream of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Activation of the H4 receptor also results in phospholipase C (PLC)-mediated calcium mobilization; however, it is unclear whether the PLC‑calcium pathway interacts with the PI3K-Rac pathway. Here, we demonstrated that calcium mobilization regulates the PI3K-dependent activation of Rac GTPases through calmodulin. A PLC inhibitor (U73122) and an intracellular calcium chelator (BAPTA-AM) suppressed the histamine-induced activation of Rac, whereas the calcium ionophore ionomycin increased the active Rac GTPases, suggesting that intracellular calcium regulates the activation of Rac. The calmodulin antagonist (W-7) inhibited the histamine-induced activation of Rac and migration of mast cells, indicating that calmodulin mediates the effect of calcium. Inhibition of calcium/calmodulin signaling suppressed histamine-induced phosphorylation of Akt. The Akt inhibitor MK-2206 attenuated histamine-induced migration of mast cells. However, it did not suppress the activation of Rac GTPases. These results suggest that Rac GTPases and Akt play independent roles in the histamine-induced chemotaxis of mast cells. Our findings enable further elucidation of the molecular mechanism of histamine-induced chemotaxis of mast cells and help identify therapeutic targets for allergic and inflammatory conditions involving mast cell accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.