Abstract

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATPγS, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr286-α-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr286 autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.

Highlights

  • Calcium/calmodulin dependent protein kinase II (CaMKII) is a protein found enriched in the brain

  • Ca2+ influx through N-methylD-aspartate receptor (NMDAR) activates CaMKII, following which, it translocates from cytosol to postsynaptic density (PSD) and binds to NMDAR subunit 2B (NR2B) [1,2,3,4]

  • It was proposed that CaMKII in combination with protein phosphatase 1 (PP1), a phosphatase enriched in PSD, can form a Ca2+-sensitive molecular switch that can respond with specificity to the type of Ca2+ signals and provide stability to molecular memories [9,10,11,12]

Read more

Summary

Introduction

Calcium/calmodulin dependent protein kinase II (CaMKII) is a protein found enriched in the brain. Ca2+ influx through N-methylD-aspartate receptor (NMDAR) activates CaMKII, following which, it translocates from cytosol to postsynaptic density (PSD) and binds to NMDAR subunit 2B (NR2B) [1,2,3,4]. This interaction has been shown to be important for the induction of long term potentiation (LTP) which is a cellular correlate for learning and memory [5].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.