Abstract
Sarcoplasmic reticulum Ca(2+)- ATPase pumps Ca(2+) ions from muscle cells to the sarcoplasmic reticulum. Here we use molecular dynamics and electrostatic modeling to investigate structural and dynamical features of key intermediates in the Ca(2+) binding process of the protein. Structural models of the protein (containing either two, one, or no calcium ions in the transmembrane domain) are constructed based on the X-ray structure by Toyoshima et al. (Nature 2000;405:647-655). The protein is embedded in a water/octane bilayer, which mimics the water/membrane environment. Our calculations provide information on the hydration of the two Ca(2+) ions, not emerging from the X-ray structure. Furthermore, they indicate that uptake of the metal ions causes large structural rearrangements of the metal binding sites. In addition, they suggest that the two ions reach their binding sites via two specific pathways. Finally, they allow identification of residues in the outer mouth of the protein that might interact with the Ca(2+) ions during the binding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.