Abstract

Illumination of H9c2 rat heart cells in the presence of Rose Bengal resulted in dose-dependent cell killing (assessed by trypan blue staining) and modification of ionic currents flowing through the heart cell membrane. Inhibitors of voltage-gated ionic currents were shown to have little effect on cell killing. Ionic current measurements were used to assess the increase in leak conductance of these cells, which has been suggested to be a causal factor in killing of other cell types (1). Inhibitors of voltage-gated ionic currents, including the sodium channel blocker tetrodotoxin (100 microM) and the calcium channel blocker lanthanum (10 microM) were shown to have little effect on cell killing. The potassium channel inhibitor tetraethylammonium (20 mM) inhibited cell killing, but the effect is viewed as being caused by an inhibition of leak current. The time course of block of voltage-activated ionic currents during illumination, in the presence of Rose Bengal, was rapid compared with that for induction of leak current and for cell killing. These observations are consistent with a role for leak current in photosensitized killing of cardiac cells. They are interpreted with respect to calcium influx through the leak current pathway as a trigger for the cellular response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.