Abstract
The role of calcium in the regulation of both the meiotic and mitotic cell cycles has been the subject of considerable investigation in the nonmammalian field. In contrast, the mechanisms for signalling meiotic maturation in the mammalian oocyte are not as well documented nor as clearly defined. In the mammalian oocyte, calcium is associated with both spontaneous and hormone-induced meiotic maturation. A transient release of endogenously stored calcium precedes germinal vesicle breakdown and can override cyclic AMP maintained meiotic arrest; it thus may signal the resumption of meiosis. Additionally, extracellular calcium is apparently required for meiotic progression past metaphase I. The time sequence for meiotic resumption and progression is very varied between species. The timing of cell cycle protein synthesis during meiosis suggests that cyclins may be expressed in oocytes of some species much earlier in their development than in others. A generic model is proposed for the mechanism for triggering meiotic resumption in the mammalian oocyte. In this model, the critical components of meiotic resumption involve the temporal relationship of cyclin synthesis and the subsequent activation of the MPF complex by the calcium signal generated, which accounts for differences among species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.