Abstract

Fuel metabolism generates multiple signals that interact to stimulate insulin secretion. These studies explored the mechanism by which fuels activate phosphoinositide (PI) hydrolysis and the role of this signal transduction pathway in fuel-stimulated insulin secretion. High potassium (30 mM), which depolarizes the membrane and increases Ca2+ influx, caused only a transient monophasic release of insulin. In contrast, glucose (20 mM) or monomethylsuccinate (MMSucc; 10 mM) markedly stimulated a sustained insulin secretory response, indicating that fuel metabolism generates a signal(s) in addition to Ca2+ influx that is required for a sustained secretory response. On the other hand, diazoxide, an ATP-sensitive K+ channel activator that prevents membrane depolarization and Ca2+ influx in response to fuel metabolism, reduced the secretory responses to glucose and MMSucc to baseline levels, demonstrating that Ca2+ influx was essential to fuel-stimulated insulin secretion. The further addition of high K+ bypassed the diazoxide block and restored insulin secretory rates. The insulin secretory response to glucose or MMSucc in the presence of diazoxide and K+ was inhibited by the Ca2+ channel antagonist nitrendipine and the protein kinase-C inhibitor staurosporine. Changes in PI hydrolysis paralleled those in insulin secretion. High potassium alone induced only a modest 2.5-fold increase in inositol phosphate accumulation. This response was significantly less than that to glucose or MMSucc, which increased inositol phosphate accumulation by 6.8- or 5.2-fold, respectively. Like its effect on secretion, diazoxide markedly reduced glucose- or MMSucc-stimulated PI hydrolysis, and this inhibition was reversed with high K+. In contrast, diazoxide had no effect on receptor-activated PI hydrolysis stimulated by 100 nM cholecystokinin (CCK), and the effects of CCK were not dependent on added fuel, indicating that fuel and CCK activate PI hydrolysis by distinct pathways. These findings demonstrate that mitochondrial metabolism of glucose or MMSucc generates a signal(s) that interacts with Ca2+ influx to stimulate PI hydrolysis and sustained insulin secretion. This pathway of fuel-activated PI hydrolysis is distinct from that of CCK receptor-activated PI hydrolysis. These studies suggest that fuel-activated PI hydrolysis plays an important role in fuel-stimulated insulin secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call