Abstract

Osteogenic differentiation is great significance for improving the bone regeneration. Present study evaluates the osteogenic ability of lanthanum (La3+) and silicate (SiO44-) substituted hydroxyapatite (MHAP) - polymeric composite coated surface treated titanium (Ti) implant. The bio-ceramic MHAP was synthesized by hydrothermal process with assistance of calcium alginate template. For enhance the hydrophilicity, the polymer poly (vinyl pyrrolidone) (PVP) was included in the composite by ultra-sonication method. The negative zeta potential value -9.97mV of Ca-alg/ La, Si-HAP was observed after the incorporation of PVP in the matrix. Incorporation of minerals and PVP polymer was confirmed and analyzed by Energy Dispersive X-ray analysis (EDX), Fourier Transform Infra-Red spectroscopy (FT-IR) and Electron Microscopy techniques. A compact coating of the composite with the thickness of 448nm on Ti surface was achieved by Electrophoretic deposition (EPD) method. The in-vitro MTT assay method and alkaline phosphate ALP activity (94% and 0.94 a.u respectively for the optimized composite) were utilized to determine the cell viability and differentiation on human Bone Marrow-Derived Stem Cells (hBMSCs). The osteogenic ability of bio-composite coated Ti in hBMSCs and in-vivo rat model has strongly suggests the fabricated Ti plate with bio-composite coatings can act as promising biomaterial for orthopedics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.