Abstract

Calcineurin B homologous proteins (CHPs) belong to the EF-hand Ca2+ -binding protein (EFCaBP) family. They have multiple important functions including the regulation of the Na+ /H+ exchanger 1 (NHE1). The human isoforms CHP1 and CHP2 share high sequence similarity, but have distinct expression profiles with CHP2 levels for instance increased in malignant cells. These CHPs bind Ca2+ with high affinity. Biochemical data indicated that Ca2+ can regulate their functions. Experimental evidence for Ca2+ -modulated structural changes was lacking. With a newly established fluorescent probe hydrophobicity (FPH) assay, we detected Ca2+ -induced conformational changes in both CHPs. These changes are in line with an opening of their hydrophobic pocket that binds the CHP-binding region (CBD) of NHE1. Whereas the pocket is closed in the absence of Ca2+ in CHP2, it is still accessible for the dye in CHP1. Both CHPs interacted with CBD in the presence and absence of Ca2+ . Isothermal titration calorimetry(ITC) analysis revealed high binding affinity for both CHPs to CBD with equilibrium dissociation constants (KD s) in the nanomolar range. The KD for CHP1:CBD was not affected by Ca2+ , whereas Ca2+ -depletion increased the KD 7-fold for CHP2:CBD showing a decreased affinity. The data indicate an isoform specific regulatory interaction of CHP1 and CHP2 with NHE1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call