Abstract

Large-conductance calcium- and voltage-gated potassium channels (BK or Slowpoke) serve as dynamic integrators linking electrical signaling and intracellular activity. These channels can mediate many different Ca2+-dependent physiological processes including the regulation of neuronal and neuroendocrine cell excitability and muscle contraction. To gain insights into the function of BK channels in vivo, we isolated a full-length cDNA encoding the alpha subunit of a Slowpoke channel from the tobacco hornworm, Manduca sexta (msslo). Amino acid sequence comparison of the deduced Manduca protein revealed at least 80% identity to the insect Slo channels. The five C-terminal alternative splice regions are conserved, but the cloned cDNA fragments contained some unique combinations of exons E, G and I. Our spatial profile revealed that transcript levels were highest in skeletal muscle when compared with the central nervous system (CNS) and visceral muscle. The temporal profile suggested that msslo expression is regulated developmentally in a tissue- and regional-specific pattern. The levels of msslo transcripts remain relatively constant throughout metamorphosis in the CNS, transiently decline in the heart and are barely detectable in the gut except in adults. A dramatic upregulation of msslo transcript levels occurs in thoracic but not abdominal dorsal longitudinal body wall muscles (DLM), suggesting that the msSlo current plays an important role in the excitation or contractile properties of the phasic flight muscle. Our developmental profile of msslo expression suggests that msSlo currents may contribute to the changes in neural circuits and muscle properties that produce stage-specific functions and behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call