Abstract

Cardiac alternans--periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic calcium transient (CaT) amplitude--is a high risk indicator for cardiac arrhythmias and sudden cardiac death. However, it remains an unresolved issue whether beat-to-beat alternations in intracellular Ca(2+) ([Ca(2+)]i ) or AP morphology are the primary cause of pro-arrhythmic alternans. Here we show that in atria AP alternans occurs secondary to CaT alternans. CaT alternans leads to complex beat-to-beat changes in Ca(2+)-regulated ion currents that determine alternans of AP morphology. We report the novel finding that alternans of AP morphology is largely sustained by the activity of Ca(2+)-activated Cl(-) channels (CaCCs). Suppression of the CaCCs significantly reduces AP alternans, while CaT alternans remains unaffected. The demonstration of a major role of CaCCs in the development of AP alternans opens new possibilities for atrial alternans and arrhythmia prevention. Cardiac alternans, described as periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias and sudden cardiac death. We investigated mechanisms of cardiac alternans in single rabbit atrial myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. Beat-to-beat alternations of AP morphology and CaT amplitude revealed a strong quantitative correlation. Application of voltage clamp protocols in the form of pre-recorded APs (AP-clamp) during pacing-induced CaT alternans revealed a Ca(2+)-dependent current consisting of a large outward component (4.78 ± 0.58 pA pF(-1) in amplitude) coinciding with AP phases 1 and 2 that was followed by an inward current (-0.42 ± 0.03 pA pF(-1); n = 21) during AP repolarization. Approximately 90% of the initial outward current was blocked by substitution of Cl(-) ions or application of the Cl(-) channel blocker DIDS identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The prominent AP prolongation at action potential duration at 30% repolarization level during the small alternans CaT was due to reduced ICaCC. Inhibition of Cl(-) currents abolished AP alternans, but failed to affect CaT alternans, indicating that disturbances in Ca(2+) signalling were the primary event leading to alternans, and ICaCC played a decisive role in shaping the beat-to-beat alternations in AP morphology observed during alternans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call