Abstract

Calcitriol, the bioactive metabolite of vitamin D, exerts its effects through interaction with the nuclear vitamin D receptor (VDR) to induce genomic responses. Calcitriol may also induce rapid responses via plasma membrane-associated VDR, involving the activation of second messengers and modulation of voltage-dependent channels. VDR is expressed in cardiomyocytes, but the molecular and cellular mechanisms involved in the rapid responses of calcitriol in the heart are poorly understood. The aim of the present study was to analyze the rapid nongenomic effect of calcitriol on L-type calcium channels, intracellular Ca2+ ([Ca2+]i) transients, and cell contractility in ventricular myocytes. We used the whole-cell patch-clamp technique to record L-type calcium current (ICaL) and confocal microscopy to study global [Ca2+]i transients evoked by electrical stimulation and cell shortening in adult mouse ventricular myocytes treated with vehicle or with calcitriol. In some experiments, ICaL was recorded using the perforated patch-clamp technique. Calcitriol treatment of cardiomyocytes induced a concentration-dependent increase in ICaL density (Half maximal effective concentration (EC50) = 0.23 nM) and a significant increase in peak [Ca2+]i transients and cell contraction. The effect of calcitriol on ICaL was prevented by pretreatment of cardiomyocytes with the protein kinase A (PKA) inhibitor KT-5720 but not with the β-adrenergic blocker propranolol. The effect of calcitriol on ICaL was absent in myocytes isolated from VDR knockout mice. Calcitriol induces a rapid response in mouse ventricular myocytes that involves a VDR-PKA-dependent increase in ICaL density, enhancing [Ca2+]i transients and contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.