Abstract

We have recently demonstrated that endothelial progenitor cells (EPCs) inhibit AngII-induced proliferation of vascular smooth muscle cells (VSMCs) by inactivating MAPKs and NF-κB signaling pathway and reducing expression of oncogene c-myc and c-fos. The inhibitory effect of EPCs on VSMCs is associated with paracrine mechanism. However, the potential mechanism of EPCs on the regulation of AngII-induced proliferation of VSMCs was unknown. Calcitonin gene-related peptide (CGRP) could inhibit AngII-induced proliferation and transformation of VSMCs. However, it has not been known whether CGRP released from EPCs is a potential regulator in regulation of AngII-induced proliferation of VSMCs. Early endothelial progenitor cell-conditioned medium(E-EPC-CM) was pre-incubated with functional blocking antibodies against CGRP for 1 h or VSMCs was preteated with CGRP(837)(CGRP receptor antagonist) for 1 h before VSMCs were pretreated with CM for 30 min. DNA synthesis ability, total protein levels, cell survival, signal transduction, and expressions of c-myc and c-fos of VSMCs induced by AngII (10(-6)mol/l) were detected to assess the role of CGRP in AngII-induced proliferation of VSMCs. E-EPC-CM could significantly inhibit AngII-induced DNA synthesis ability, total protein levels, cell survival, phosphorylation of ERK, JNK, p38, p65, and expressions of c-myc and c-fos compared with the control group(P < 0.05). However, Pretreatment with anti-CGRP antibody and CGRP(837) could significantly weaken the inhibitory effect of E-EPC-CM on proliferation of VSMCs induced by AngII (P < 0.05). EPCs exert anti-proliferative effects on VSMCs mediated by the release of CGRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.