Abstract

Within the vestibular system, calcitonin gene-related peptide (CGRP) has been localized in the efferent terminals and their brainstem neuronal cell bodies in several animal models. Presently, very few studies have verified these findings in the vestibular system in adult primates or humans. CGRP immunoreactivity (CGRPi) and its colocalization with choline acetyltransferase immunoreactivity (ChATi) in human vestibular end organs and Scarpa’s ganglion were studied using polyclonal antibodies against CGRP and ChAT, at the light-microscopic level. The CGRPi axons ramified to produce numerous CGRPi terminals throughout the neurosensory epithelium of the maculae and cristae, primarily in the basal and midbasal areas. Numerous CGRPi efferent terminals made contact with both type II vestibular hair cells and the afferent chalices surrounding type I vestibular hair cells. All CGRP immunoreactive fibers also exhibited ChATi. As in the animal models, no CGRPi was found within Scarpa’s ganglion. This study provides evidence for CGRPi in the human vestibular periphery and validates the biomedical relevance of the current animal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.