Abstract

Calcitonin gene-related peptide (CGRP) in the thyroid has a dual localization to nerve fibers around blood vessels and follicles and to parafollicular (C) cells. CGRP was found to coexist with substance P (SP) in most of the nerve fibers; a few CGRP fibers seemed to lack SP, and a few SP fibers seemed to be devoid of CGRP. In the C cells, CGRP coexisted with calcitonin (CT). Cervical vagotomy (extirpation of the nodose ganglion) eliminated approximately 50% of the CGRP/SP fibers in the thyroid without any overt influence on CGRP/CT in the C cells. Removal of the superior cervical ganglion or chemical sympathectomy (6-hydroxydopamine treatment) affected neither thyroid CGRP/SP nerve fibers nor CGRP/CT-storing C cells. CGRP nerve cell bodies were numerous in the jugular-nodose ganglionic complex (notably in the jugular portion); in many of them, CGRP coexisted with SP. A few scattered CGRP nerve cell bodies also occurred in the laryngeal ganglion, whereas none was found in the thyroid ganglion. Hypercalcemia evoked by vitamin D2 treatment, which is known to degranulate thyroid C cells, reduced the thyroid content of both CGRP and CT. As tested in mice in vivo, CGRP and SP alone or together had no effect on basal or TSH- or isoprenaline-induced thyroid hormone secretion. Vasoactive intestinal peptide-stimulated iodothyronine release, on the other hand, was enhanced by CGRP, but not by SP. SP had no effect on combined vasoactive intestinal peptide-CGRP-stimulated iodothyronine release. These findings suggest that CGRP participates in the control of thyroid hormone secretion and that, like CT, CGRP in the C cells is under control of the serum calcium level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call