Abstract

Calcitonin gene-related peptide antagonists have potential for the treatment and prevention of disease states such as non-insulin-dependent diabetes mellitus, migraine headache, pain, and inflammation. To gain insight into the spatial requirements for CGRP antagonism, three strategies were employed to restrict the conformation of the potent undecapeptide antagonist, [D31,P34,F35]CGRP27-37. First, aza-amino acid scanning was performed, and ten aza-peptide analogues were synthesized and examined for biological activity. Second, (3S,6S,9S)-2-oxo-3-amino-indolizidin-2-one amino acid (I2aa) and (2S,6S,8S)-9-oxo-8-amino-indolizidin-9-one amino acid (I9aa) both were introduced at positions 31-32, 32-33, 33-34, and 34-35, regions of the backbone expected to adopt turns. Finally, the conformation of the backbone and side-chain of the C-terminal residue, Phe35-Ala36-Phe37-NH2, was explored employing (2S,4R,6R,8S)-9-oxo-8-amino-4-phenyl-indolizidin-9-one amino acid (4-Ph-I9aa) as a constrained phenylalanine mimic. The structure-activity relationships exhibited by our 26 analogues illustrate conformational requirements important for designing CGRP antagonists and highlight the importance of beta-turns centered at Gly33-Pro34 for potency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call