Abstract

The wettability of mineral surfaces controls a range of phenomena in natural and industrial processes. In reservoirs, rock wettability determines the effectiveness of oil production; thus, modification of mineral surface properties can lead to enhanced oil recovery. Recent work reports that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2+ and SO42– at 75 and 80 °C. We made submicrometer scale maps of adhesion force and contact angle and demonstrated that the a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call