Abstract
Calcium leaching from cementitious materials into bentonite is a key process for the long-term alteration of cement–clay interfaces of engineered barrier systems. Strong chemical gradients between cement and clay drive the precipitation of minerals such as calcium silicate hydrate (C–S–H) and calcite. To analyze the mineralogical and porosity evolution at the cement–clay interface, composite specimens consisting of cement paste and bentonite mixed with various amounts of sodium carbonate were subjected to immersion and chloride migrations tests and were investigated by electron probe micro-analysis (EPMA), thermogravimetry/differential thermal analysis (TG-DTA), and X-ray diffraction (XRD) after 4–20 months of immersion. The results show that adding sodium carbonate to the bentonite enhanced the formation of calcite in the form of a surface layer on the cement paste. This suggests pore clogging at the interface and implies the existence of a threshold amount of carbonate addition above which pore clogging occurs. This is the first of two papers; the accelerated evolution of the samples in the presence of an electrical field is discussed in the second paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Advanced Concrete Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.