Abstract

Abstract North of the Insubric line, in the Central Alpine “root zone”, carbonate rocks are concentrated in very narrow zones and have been metamorphosed under amphibolite facies conditions by the Tertiary Lepontine metamorphism (grain size ~1 mm). Post-metamorphic deformation under greenschist facies conditions produced calcite mylonite bands a few millimeters to tens of meters wide in these marble zones. Microstructural development begins with twin formation, bending of twin boundaries, grain and twin boundary migration and recrystallization in high stress regions. Progressive mylonitization—by dynamic recrystallization—results in a microstructure with elongated calcite crystals (long axis 20–50 μm, axial ration 1:4). In this fine-grained matrix, porphyroclasts of calcite, quartz, white mica, biotite, diopside, tremolite, scapolite and plagioclase are preserved. Ultra-mylonite bands in pure calcite rocks show an even finer grain size of 5–10 μm. Lattice preferred orientation is not present in the undeformed marbles, but it develops during mylonitization. The c-axis orientation in the mylonites forms an asymmetric point maximum. In the ultra-mylonite no preferred orientation is left. It is concluded from microstructural and textural aspects, that during mylonitization, dislocation creep accompanied by dynamic recrystallization were the most important processes, whilst grain-boundary sliding was the dominant mechanism during the formation of the ultra-mylonites. Shear-sense determinations indicate a horizontal right-lateral strike-slip shear system. This is in good agreement with evidence regarding other movements along the Insubric line which can be observed in ductile and brittle shear zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call