Abstract

To determine the role of calcipotriol, a vitamin D3 analogue, in myopia development and altering the expression of scleral α1 chain of type I collagen (Col1α1) in mice. We also aimed to identify if the signaling pathway mediating the above changes is different from the one involved in transforming growth factor β2 (TGF-β2)-mediated increases of COL1A1 in cultured human scleral fibroblasts (HSFs). C57BL/6J mice were either intraperitoneally injected with calcipotriol and subjected to form deprivation (FD) or exposed to normal refractive development for 4weeks. Scleral vitamin D receptor (Vdr) expression was knocked down using a Sub-Tenon's capsule injection of an adeno-associated virus-packaged short hairpin RNA (AAV8-shRNA). Refraction and biometric measurements evaluated myopia development. A combination of knockdown and induction strategies determined the relative contributions of the vitamin D3 and the TGF-β2 signaling pathways in modulating COL1A1 expression in HSFs. Calcipotriol injections suppressed FD-induced myopia (FDM), but it had no significant effect on normal refractive development. AAV8-shRNA injection reduced Vdr mRNA expression by 42% and shifted the refraction toward myopia (-3.15 ± 0.99D, means ± SEM) in normal eyes. In HSFs, VDR knockdown reduced calcipotriol-induced rises in COL1A1 expression, but it did not alter TGF-β2-induced increases in COL1A1 expression. Additionally, TGF-β2 augmented calcipotriol-induced rises in COL1A1 expression. TGF-β receptor (TGFBRI/II) knockdown blunted TGF-β2-induced increases in COL1A1 expression, whereas calcipotriol-induced increases in VDR and COL1A1 expression levels were unaltered. Scleral vitamin D3 inhibits myopia development in mice, potentially by activating a VDR-dependent signaling pathway and increasing scleral COL1A1 expression levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call