Abstract

BackgroundThe calcium activated protein phosphatase 2B, also known as calcineurin, has been implicated as a cell signaling molecule involved with transduction of physiological signals (free cytosolic Ca2+) into molecular signals that influence the expression of phenotype-specific genes in skeletal muscle. In the present study we address the role of calcineurin in mediating adaptations in myosin heavy chain (MHC) isoform expression and muscle mass using 3-month old wild-type (WT) and transgenic mice displaying high-level expression of a constitutively active form of calcineurin (MCK-CN* mice).ResultsSlow muscles, e.g., soleus, were significantly larger (by ~24%), whereas fast muscles, e.g., medial gastrocnemius (MG) and tibialis anterior were significantly smaller (by ~26 and ~16%, respectively) in MCK-CN* mice compared to WT. The masses of mixed phenotype muscles, such as the plantaris and the extensor digitorum longus, were not significantly changed from WT. The soleus, plantaris, MG and diaphragm displayed shifts toward slower MHC isoforms, e.g., soleus from WT mice contained ~52% MHC-I, ~39% MHC-IIa, and ~9% MHC-IIx, whereas MCK-CN* mice had ~67% MHC-I, ~26% MHC-IIa, and ~7% MHC-IIx. The specific isoforms that were either up or down-regulated were muscle-specific. For instance, the proportion of MHC-IIa was decreased in the soleus and diaphragm, but increased in the plantaris and MG of MCK-CN* mice. Also, the proportion of MHC-IIx was unchanged in the soleus, decreased in the diaphragm and increased in the plantaris and MG of MCK-CN* relative to WT mice. Fast to slow shifts in fiber type proportions were evident for the plantaris, but not the soleus. Fast, but not slow, plantaris fibers of MCK-CN* mice had higher oxidative and lower glycolytic properties than WT.ConclusionThese data suggest that calcineurin activation can influence muscle phenotype and that the specific influence of calcineurin activation on the phenotypic and mass characteristics of a muscle is dependent upon the original phenotypic state of the muscle.

Highlights

  • The calcium activated protein phosphatase 2B, known as calcineurin, has been implicated as a cell signaling molecule involved with transduction of physiological signals into molecular signals that influence the expression of phenotype-specific genes in skeletal muscle

  • Due to transgene expression being driven by a fast muscle-specific enhancer (MCK enhancer), the fast medial gastrocnemius (MG) muscle displayed the highest level of expression

  • The MG showed a reduction in myosin heavy chain (MHC)-IIb, the fastest of the MHC isoforms expressed in mice, and elevations in MHCs-I, -IIa, and -IIx

Read more

Summary

Introduction

The calcium activated protein phosphatase 2B, known as calcineurin, has been implicated as a cell signaling molecule involved with transduction of physiological signals (free cytosolic Ca2+) into molecular signals that influence the expression of phenotype-specific genes in skeletal muscle. In the present study, transgenic mice containing a highly expressed transgene consisting of a constitutively active form of calcineurin (CN*) driven by the muscle creatine kinase (MCK) enhancer were used to assess the influence of chronic calcineurin activation on MHC isoform protein and muscle mass and fiber cross-sectional area (CSA). Previous studies using the same line of transgenic mice demonstrated that calcineurin activation elevates the expression of some slow phenotypic genes [11], the percentage of EDL fibers with MHC-IIa [19], and proteins related to insulin-stimulated glucose uptake [20]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call