Abstract

Rats display little to no haversian remodeling of cortical bone. This fact, combined with the endochondral formation of cortical bone, means that rat femoral cortical bone contains highly mineralized cartilage islands in a central band of mid-femoral cross sections. We demonstrate that these islands have a significantly higher degree of mineralization than the surrounding bone, using quantitative backscattered electron imaging. The cartilaginous nature of the islands was verified by immunostaining for collagen type II. Toluidine blue staining of longitudinal sections and three-dimensional synchrotron radiation X-ray tomographic microscopy confirmed that the islands are elongated along the femoral long axis. Nanoindentation revealed significantly higher values of both reduced modulus and hardness in the islands compared to the surrounding bone, reflecting a higher degree of mineralization. The calcified cartilage islands were distributed in a central zone of the bone, from the growth plates through the mid-femoral bone. The presence of these cartilage islands and their possible effect on mechanical properties could be an additional reason why haversian remodeling is observed in higher-order species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.