Abstract
Models based on differential programming, like deep neural networks, are well established in research and able to outperform manually coded counterparts in many applications. Today, there is a rising interest to introduce this flexible modeling to solve real-world problems. A major challenge when moving from research to application is the strict constraints on computational resources (memory and time). It is difficult to determine and contain the resource requirements of differential models, especially during the early training and hyperparameter exploration stages. In this article, we address this challenge by introducing CalcGraph, a model abstraction of differentiable programming layers. CalcGraph allows to model the computational resources that should be used and then CalcGraph’s model interpreter can automatically schedule the execution respecting the specifications made. We propose a novel way to efficiently switch models from storage to preallocated memory zones and vice versa to maximize the number of model executions given the available resources. We demonstrate the efficiency of our approach by showing that it consumes less resources than state-of-the-art frameworks like TensorFlow and PyTorch for single-model and multi-model execution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.