Abstract

Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.