Abstract
AbstractWe show that the solutions to the equations, defining the so-called Calabi–Yau condition for fourth-order operators of degree two, define a variety that consists of ten irreducible components. These can be described completely in parametric form, but only two of the components seem to admit arithmetically interesting operators. We include a description of the 69 essentially distinct fourth-order Calabi–Yau operators of degree two that are presently known to us.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.