Abstract
We analyze the moduli spaces of Calabi-Yau three-folds and their associated conformally invariant nonlinear σ-models and show that they are described by an unexpectedly rich geometrical structure. Specifically, the Kähler sector of the moduli space of such Calabi-Yau conformal theories admits a decomposition into adjacent domains some of which correspond to the (complexified) Kähler cones of topologically distinct manifolds. These domains are separated by walls corresponding to singular Calabi-Yau spaces in which the spacetime metric has degenerated in certain regions. We show that the union of these domains is isomorphic to the complex structure moduli space of a single topological Calabi-Yau space—the mirror. In this way we resolve a puzzle for mirror symmetry raised by the apparent asymmetry between the Kähler and complex structure moduli spaces of a Calabi-Yau manifold. Furthermore, using mirror symmetry, we show that we can interpolate in a physically smooth manner between any two theories represented by distinct points in the Kähler moduli space, even if such points correspond to topologically distinct spaces. Spacetime topology change in string theory, therefore, is realized by the most basic operation of deformation by a truly marginal operator. Finally, this work also yields some important insights on the nature of orbifolds in string theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.