Abstract
Dimer models have been used in string theory to construct path algebras with relations that are 3-dimensional Calabi–Yau Algebras. These constructions result in algebras that share some specific properties: they are finitely generated modules over their centers and their representation spaces are toric varieties. In order to describe these algebras we introduce the notion of a toric order and show that all toric orders which are 3-dimensional Calabi–Yau algebras can be constructed from dimer models on a torus. Toric orders are examples of a much broader class of algebras: positively graded cancellation algebras. For these algebras the CY-3 condition implies the existence of a weighted quiver polyhedron, which is an extension of dimer models obtained by replacing the torus with any two-dimensional compact orientable orbifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.