Abstract

In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS and SVP in tomato and Arabidopsis, respectively. Late flowering of the primary and sympodial shoots of Cajointless indicates that the gene functions as a suppressor of vegetative growth in all shoot meristems. While CaJOINTLESS and JOINTLESS have partially conserved functions, the effect on flowering time and on sympodial development in pepper, as well as the epistasis over FASCICULATE, the homologue of the major determinant of sympodial development SELF-PRUNING, is stronger than in tomato. Furthermore, the solitary terminal flower of pepper is converted into a structure composed of flowers and leaves in the mutant lines. This conversion supports the hypothesis that the solitary flowers of pepper have a cryptic inflorescence identity that is suppressed by CaJOINTLESS. Formation of solitary flowers in wild-type pepper is suggested to result from precocious maturation of the inflorescence meristem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.