Abstract

To determine whether CAIPIRINHA-Dixon-TWIST (CDT) volume-interpolated breath-hold examination (VIBE) improves image quality by reducing gadoxetate-disodium-associated transient arterial-phase motion artefacts in magnetic resonance imaging (MRI) of the liver. MRI studies of the liver from 270 patients who had received gadoxetate disodium were retrospectively evaluated in regard to arterial timing accuracy and arterial phase motion artefact severity (VIBE: 90/270, CAIPIRINHA-VIBE: 90/270 and CDT-VIBE: 90/270 cases). Three independent and blinded readers assessed arterial phase timing and motion artefact severity (5-point scale). Interrater agreement was calculated by weighted kappa. Continuous variables were compared via a two-sided ANOVA, categorical variables via a χ2 test. An ordinal regression analysis was performed to identify other predictors of motion artefacts. CDT-VIBE improved correct late arterial timing rates and reduced motion-related image deterioration rates. Successful late arterial liver visualisation was achieved in 56.7% (VIBE) compared with 66.7% (CAIPIRINHA-VIBE) and 84.4% (CDT-VIBE) (P < 0.0001). Good/excellent image quality was achieved in 56.7% vs. 66.7% and 73.3%, respectively (P = 0.03). Male sex negatively influenced image quality (P = 0.03). CDT-VIBE increases the diagnostic utility of gadoxetate disodium-based liver MRI by reducing respiratory motion artefacts and optimising late arterial visualisation compared with VIBE and CAIPIRINHA-VIBE. • CAIPIRINHA-Dixon-TWIST-VIBE-MRI (CDT) mitigates effects of acute transient dyspnoea caused by gadoxetate disodium. • CDT improves late arterial imaging compared with VIBE and CAIPIRINHA-VIBE. • The rate of ideal late arterial images is higher with CDT-VIBE vs. VIBE or CAIPI-VIBE. • The impact of respiratory motion artefacts on arterial phase images can be reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.