Abstract

Caiman latirostris is one of the two crocodilian species that inhabit Argentina. In this country, as a consequence of agricultural frontiers expansion during the last years, many areas of the geographic distribution of the broad snouted caiman overlap with regions of intensive agricultural activity. Contaminants released to the environment may induce genetic alterations in wildlife, which could lead to mutations and/or carcinogenesis. Up to the moment, no studies had been made concerning the possibbility to apply biomarkers of genotoxic evaluation in C. latirostris. The aim of this study was to adapt two widely used genotoxic techniques, the comet assay and the micronucleus test, for their application in C. latirostris and to determine the baseline values in this species, in order to establish its suitability as a sentinel organism for future genotoxic monitoring of environmental pollutants. A total of 41 juvenile caimans of 4 months old (FMO) and 10 months old (TMO) were used. Genotoxic techniques were applied on peripheral blood erythrocytes introducing the necessary modifications required by the material, which are presented here. Our results show that baseline values of DNA damage are quite stable among juvenile caimans (MN: FMO animals 0.87 ± 0.74 and TMO animals 1.04 ± 0.92; DI: FMO animals 103.40 ± 3.36 and TMO animals 120.08 ± 11.33), being independent of the nest of origin, sex and size of the animals and confirm the potential value of both short term tests as accurate screening tools for the evaluation of genotoxic agents in C. latirostris. This is the first reference to the application of genotoxic techniques on C. latirostris and the second in crocodilians. Data provided here will be useful for future studies involving the biomonitoring of natural regions where C. latirostris occurs, employing this species as a sentinel organism for genotoxic assessment of environmental pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.