Abstract

ABSTRACTUsing the recently developed Cahn-Hilliard reaction (CHR) theory, we present a simple mathematical model of the transition from solid-solution radial diffusion to two-phase shrinking-core dynamics during ion intercalation in a spherical solid particle. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary under all conditions, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of the diffusional chemical potential in the CHR theory. We also consider the effect of surface wetting or de-wetting by intercalated ions, which can lead to shrinking core phenomena with three distinct phase regions. The basic physics are illustrated by different cases, including a simple model of lithium iron phosphate (neglecting crystal anisotropy and coherency strain).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.