Abstract

Caging provides an alternative to point-contact-based rigid grasping, relying on reasoning about the global free configuration space of an object under consideration. While substantial progress has been made toward the analysis, verification, and synthesis of cages of polygonal objects in the plane, the use of caging as a tool for manipulating general complex objects in 3-D remains challenging. In this work, we introduce the problem of caging rigid and partially deformable 3-D objects, which exhibit geometric features we call double forks and necks. Our approach is based on the linking number—a classical topological invariant, allowing us to determine sufficient conditions for caging objects with these features even in the case when the object under consideration is partially deformable under a set of neck or double fork preserving deformations. We present synthesis and verification algorithms and demonstrations of applying these algorithms to cage 3-D meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.