Abstract
Two caged NADP compounds have been synthesized and characterized for use in the crystallographic study of isocitrate dehydrogenase (IDH), as well as for general use in cell biology, metabolism, and enzymology. One caged NADP compound has been designed to be "catalytically caged" so that it can bind to IDH prior to photolysis but is not catalytically active. A second NADP compound is "affinity caged" so that addition of the caging group inhibits binding of the compound to IDH prior to photolysis. The catalytically caged compound was synthesized in a two-step process, starting with the NADase-catalyzed exchange of a synthetic nicotinamide derivative onto NADP. X-ray structures of the NADP compounds with IDH show the catalytically caged NADP bound to the enzyme with its nicotinamide group improperly positioned to allow turnover, while the affinity caged NADP does not bind to the enzyme at concentrations up to 50 mM. Two analogous caged NAD compounds have also been synthesized. The NADP and NAD compounds were characterized in terms of kinetics, quantum yield, and product formation. The affinity caged NADP compound P2'-[1-(4,5-dimethoxy-2-nitrophenyl)ethyl] NADP (VIII) is photolyzed at a rate of 1.8 x 10(4) s-1 with a quantum yield of 0.19 at pH 7; the NAD analog P-[1-(4,5-dimethoxy-2-nitrophenyl)ethyl] NAD (IX) is photolyzed at at a rate of 1.7 x 10(4) s-1 with a quantum yield of 0.17.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.