Abstract

The chemical shift of xenon (at natural abundance) dissolved in a variety of 1-butyl-3-methylimidazolium-based ionic liquids (ILs) has been measured with (129)Xe NMR spectroscopy. The large chemical shift differences observed are mainly related to the type of anion; the strongest deshielding effect is observed ILs with I(-), Br(-), and Cl(-) anions, and the strongest shielding is found for the bis(trifluoromethanesulfonyl)imide ([Tf2N](-))-based IL. The measured (129)Xe chemical shift variations correlate well with the IL structure organization imposed by the anions and with the size of the empty voids due to charge alternation patterns. Descriptors taken from literature data on X-ray and neutron scattering, as well as single-crystal structures where available, support this interpretation. The proposed methodology adds a new investigating tool to the elucidation of the short-range order in ILs. The observed chemical shift trend provides information about how these solvents are organized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.