Abstract
Dentatorubral–pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine–azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.