Abstract

Freeze-dried skinned cardiac and skeletal muscle preparations of the rabbit were immersed in Ca2+-containing solutions with different concentrations of caffeine. The relation between the negative logarithm of the Ca2+ concentration (pCa) and normalized developed force was studied. The exact position of these Ca2+-sensitivity functions proved to be dependent on both the sarcomere length (monitored by means of laser diffraction) and caffeine concentration. High concentrations of caffeine induce a reversible fall in tension, particularly at low binding site saturation (low pCa) and long sarcomere lengths. At a concentration of 10 mM caffeine, the sarcomere length dependency of the Ca2+-sensitivity curves is markedly reduced for the rising part of the curve. Only the depressive effect of caffeine at high pCa remains. A possible mechanism of caffeine action is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.