Abstract
ObjectivesThe aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation.MethodsTen taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30).ResultsCaffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected. Furthermore, T30 (CAF: 869.1 ± 323.2 s; PLA: 735.5 ± 232.2 s, P = 0.58), HRR60s (CAF: 34 ± 8 bpm; PLA: 38 ± 9 bpm, P = 0.44), HRRτ (CAF: 182.9 ± 40.5 s, PLA: 160.3 ± 62.2 s, P = 0.23) and HRRamp (CAF: 70.2 ± 17.4 bpm; PLA: 79.2 ± 17.4 bpm, P = 0.16) were not affected by caffeine ingestion.ConclusionsCaffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation.
Highlights
Oxidative metabolism is the main metabolic pathway to provide energy during taekwondo combat [1], the ability to maintain high-intensity actions via the anaerobic system is considered a further determining factor during a taekwondo match [2]
Caffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation
Caffeine ingestion has previously been shown to impair parasympathetic reactivation [9], though it could be hypothesized that caffeine supplementation would prolong sympathetic activity that occurs during exercise, increasing both adrenergic factors and local metabolites during recovery
Summary
Oxidative metabolism is the main metabolic pathway to provide energy during taekwondo combat [1], the ability to maintain high-intensity actions via the anaerobic system is considered a further determining factor during a taekwondo match [2]. Nutritional strategies that could improve glycolytic metabolism, such as caffeine supplementation, could improve performance during simulated taekwondo combat. Buchheit et al [4] showed that all HRR indexes were significantly correlated with glycolytic metabolism during high-intensity exercise. Caffeine ingestion has previously been shown to impair parasympathetic reactivation [9], though it could be hypothesized that caffeine supplementation would prolong sympathetic activity that occurs during exercise, increasing both adrenergic factors and local metabolites (i.e. epinephrine, lactate) during recovery. Caffeine may actual slow parasympathetic reactivation after combat simulation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.