Abstract
Caffeine contracture tension, effect of caffeine on the resting membrane potential, and caffeine influx in normal and denervated frog sartorius muscle have been investigated. Peak caffeine contracture tension is increased after denervation at all caffeine concentrations. The percentage increases in tension are highest for lower caffeine concentrations. The caffeine concentration required for half maximum tension is decreased from about 3.6 mM in control muscles to 2.6 mM in denervated muscles. Caffeine at 3.5 mM produces a depolarization of about 6 mV in control muscles and 16mV in denervated muscles. The large contracture tensions observed in denervated muscles are not due to the greater depolarization produced by the drug in denervated muscles since innervated muscles depolarized to the same level by external K+ do not enhance caffeine contracture tension. Both control and denervated muscles are highly permeable to caffeine. The increases in sarcoplasmic reticulum development ( Moscatello et al. 1965) and calcium content ( Picken and Kirby 1976) promoted by denervation may explain the larger tension elicited by caffeine in denervated muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.