Abstract

Caffeine (1,3,7-trimethylxanthine) has been implicated in the regulation of glucose and lipid metabolism including actions such as insulin-independent glucose transport, glucose transporter 4 expression, and fatty acid utilization in skeletal muscle. These effects are similar to the exercise-induced and 5′adenosine monophosphate–activated protein kinase (AMPK)–mediated metabolic changes in skeletal muscle, suggesting that caffeine is involved in the regulation of muscle metabolism through AMPK activation. We explored whether caffeine acts on skeletal muscle to stimulate AMPK. Incubation of rat epitrochlearis and soleus muscles with Krebs buffer containing caffeine (≥3 mmol/L, ≥15 minutes) increased the phosphorylation of AMPK α Thr 172, an essential step for full kinase activation, and acetyl–coenzyme A carboxylase Ser 79, a downstream target of AMPK, in dose- and time-dependent manners. Analysis of isoform-specific AMPK activity revealed that both AMPK α1 and α2 activities increased significantly. This enzyme activation was associated with a reduction in phosphocreatine content and an increased rate of 3- O-methyl- d-glucose transport activity in the absence of insulin. These results suggest that caffeine has similar actions to exercise by acutely stimulating skeletal muscle AMPK activity and insulin-independent glucose transport with a reduction of the intracellular energy status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call