Abstract

Energy drinks are thought to improve certain aspects of athletic and cognitive performances. Moreover, less is understood about physiological mechanisms that might underlie these effects. The aim of this study was to examine the influence of sugar-free energy drink (SFED) ingestion on corticomotor excitability and plasticity. Fourteen college students consumed a commercially available SFED or a “dummy” drink. By using Transcranial magnetic Stimulation (TMS) we investigated resting motor threshold (RMT), motor evoked potential (MEP) amplitude and cortical silent period (CSP). Paired-pulse stimulation was used to assess short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Sensorimotor integration was investigated with the short- and long-afferent inhibition paradigms (SAI and LAI). Cortical plasticity was studied with the paired associative stimulation (PAS) paradigm. In addition, we examined the effect of SFED on simple reaction time (RT), pre-movement facilitation and post-exercise facilitation (PEF).SFED consumption decreased ICF, shortened RT, increased pre-movement facilitation and PEF of the motor evoked potentials. These results demonstrate that SFED consumption induced a shorter RT that is paralleled by changes in cortical excitability at rest, prior and after a non-fatiguing muscle contraction. These acute changes in brain function might be of relevance in understanding the mechanisms underlying the enhancement of psychomotor performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call