Abstract

BackgroundSeveral studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche.MethodsFor survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade.ResultsCAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE.ConclusionsOur results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche.

Highlights

  • Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein

  • We found that CAPE upregulated the expression of HIF-1α and stem cell factor (SCF) to promote the expansion of haematopoietic stem/progenitor cells (HSPCs) in vitro [29]

  • We found that daily CAPE treatment for 3 days resulted in a 93.75% survival rate in mice with lethal irradiation and 2.5 × 105 bone marrow (BM) mononuclear cells (MNCs) transplantation (Fig. 1b), which indicated that three injections of CAPE were effective in elevating the survival rates of mice receiving bone marrow transplantation (BMT)

Read more

Summary

Introduction

Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. Haematopoietic stem cell transplantation (HSCT) has been applied for treating malignant and nonmalignant haematologic diseases in the clinic for over 50 years [1, 2]. The curative rate of this treatment, especially for cord blood (CB) HSCT, must be improved because of the low homing efficiency of haematopoietic stem and progenitor cells (HSPCs), delayed engraftment and the occurrence of graft versus host diseases. Efficient homing and engraftment of HSPCs are critical for haematopoietic repopulation in patients after transplantation, and these processes depend on several important steps. Infused HSPCs find their way to bone marrow (BM) microvessels via rolling and firm adhesion to endothelial cells. The transplanted HSPCs undergo proliferation and multilineage differentiation in their BM home and reconstitute the haematopoietic and immune systems in the recipients

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.