Abstract

Anti-inflammatory effects of caffeic acid derivatives have been widely reported. However, the effect of caffeic acid methyl ester (CAME) on the anti-allergic effect in mast cells has not been elucidated. The present study was aimed to investigate the anti-allergic properties of CAME and its underlying mechanism. Rat basophilic leukemia (RBL-2H3) cells were incubated withphorbol-12-myristate-13-acetate (PMA) and a calcium ionophore, A23187 to induce mast cell activation. Anti-allergic effect of CAME was examined by measuring cytokine, histamine and β-hexosaminidase release. Western blotting was conducted to determine cyclooxygenase-2 (COX-2) expression, Mitogen-activated protein kinases (MAPKs) activation and nuclear factor-κB (NF-κB) translocation. CAME significantly suppressed PMA/A23187-induced TNF-α secretion, and β-hexosaminidase and histamine release in a concentration-dependent manner. Furthermore, CAME significantly attenuated PMA/A23187-induced COX-2 expression and nuclear translocation of NF-κB. CAME significantly suppressed PMA/A23187-induced increased phosphorylation of p38, ERK and JNK RBL-2H3 cells. The results demonstrate that CAME significantly attenuates anti-allergic action by suppressing degranulation of mast cells through the suppression of MAPKs/NF-κB signaling pathway in RBL-2H3 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call