Abstract

Caffeic acid (CA) is a natural compound abundant in fruits, coffee and plants. This study aims to investigate the involved mechanism of the therapeutic detoxification of CA against acetaminophen (APAP)-induced hepatotoxicity. CA (10, 30 mg/kg) was orally given to mice at 1 h after mice were pre-administrated with APAP (300 mg/kg). The therapeutic detoxification of CA against APAP-induced hepatotoxicity was observed by detecting serum aminotransferases, liver malondialdehyde (MDA) amount and liver histological evaluation in vivo. CA reduced APAP-induced increase in the mRNA expression of early growth response 1 (Egr1) in hepatocytes, and inhibited APAP-induced Egr1 transcriptional activation in vitro and in vivo. CA reduced the increased expression of growth arrest and DNA-damage-inducible protein (Gadd45)α induced by APAP in hepatocytes. Moreover, Egr1 siRNA reduced Gadd45α expression and reversed APAP-induced cytotoxicity in hepatocytes. Further results showed that CA blocked APAP-induced activation of extracellular-regulated protein kinase (ERK1/2) signaling cascade in vivo and in vitro. In addition, the application of ERK1/2 inhibitors (PD98059 and U0126) abrogated the nuclear translocation of Egr1 induced by APAP in hepatocytes. In conclusion, this study demonstrated the therapeutic detoxification of CA against APAP-induced liver injury, and the inhibition of CA on ERK1/2-mediated Egr1 transcriptional activation was involved in this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call