Abstract
Hippocampal neurogenesis occurs throughout life, but it declines with age. D-galactose (D-gal) enhances cellular senescence through oxidative stress leading to neurodegeneration and memory impairment. Caffeic acid (CA) acts as an antioxidant via decreasing brain oxidative stress. This study aims to investigate the advantages of CA in alleviating the loss of memory and neurogenesis production in the hippocampus in aged rats activated by D-gal. Fifty-four male Sprague-Dawley rats were unpredictably arranged into six groups. In the D-gal group, rats were administered D-gal (50 mg/kg) by intraperitoneal (i.p.) injection. For the CA groups, rats received 20 or 40 mg/kg CA by oral gavage. In the co-treated groups, rats received D-gal (50 mg/kg) and CA (20 or 40 mg/kg) for eight weeks. The results of novel object location (NOL) and novel object recognition (NOR) tests showed memory deficits. Moreover, a decline of neurogenesis in the hippocampus was detected in rats that received D-gal by detecting rat endothelial cell antigen-1 (RECA-1)/Ki-67, 5-bromo-2′-deoxyuridine (BrdU)/neuronal nuclear protein (NeuN), doublecortin (DCX) by means of staining to evaluate blood vessel associated proliferating cells, neuronal cell survival and premature neurons, respectively. By contrast, CA attenuated these effects. Our results postulate that CA attenuated the impairment of memory in D-gal-stimulated aging by up-regulating levels of hippocampal neurogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.