Abstract

Leptin is an adipokine that plays an important role in the regulation of energy homeostasis. The failure of endogenous and exogenous leptin to mediate its effects (for example, at suppressing appetite and decreasing body weight) has been termed leptin resistance. Hyperleptinemia and leptin resistance can be well demonstrated in animals in which obesity is induced by consumption of a palatable, high-calorie diet (e.g., cafeteria diet-induced obesity). Since leptin receptor signaling is known to be impaired in the hypothalamic arcuate nucleus (ARC) of obese rodents, we investigated the effect of leptin on nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in the ARC of male Wistar rats with cafeteria diet-induced obesity. Our results have shown that after intraperitoneal administration of leptin, the number of NADPH-d positive neurons in the ARC was significantly lower in obese rats compared with that observed in normal weight rats. Additionally, we have found that leptin-induced NADPH-d staining in ARC neurons and the adjacent ependyma was decreased in obese rats. The results presented here suggest that the ability of leptin to activate nitric oxide synthase in neurons within the ARC as well as tanycytes and ependymal cells of the third ventricle is reduced in rats made obese by a cafeteria diet. We speculate that impairment in leptin-induced NO production presents a potential mechanism, involved in the pathogenesis of obesity and obesity-related disease states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.