Abstract
Existing fault prediction algorithms based on deep learning have achieved good prediction performance. These algorithms treat all features fairly and assume that the progression of the equipment faults is stationary throughout the entire lifecycle. In fact, each feature has a different contribution to the accuracy of fault prediction, and the progress of equipment faults is non-stationary. More specifically, capturing the time point at which a fault first appears is more important for improving the accuracy of fault prediction. Moreover, the progress of the different faults of equipment varies significantly. Therefore, taking feature differences and time information into consideration, we propose a Causal-Factors-Aware Attention Network, CaFANet, for equipment fault prediction in the Internet of Things. Experimental results and performance analysis confirm the superiority of the proposed algorithm over traditional machine learning methods with prediction accuracy improved by up to 15.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.