Abstract
Aeronautical industries have looked for news fabrication processes to reduce the costs and the waste of the material during milling operations. One of these new processes is the creep age forming (CAF). The purpose of this work was based on springback analysis during the forming of single- and double-curved sheets of Al 7050 by the process of CAF. A simplified model based on a Norton power law was used in order to, alongside with a program of finite elements, allow the calculation of springback after the process. The experimental verification was carried out. Beside the springback results, other results were a decrease in the Young’s module of 11.5% in the creep aging temperature, in relation with ambient temperature during the CAF process and the variation of aluminum alloy’s yield stress during the process. The springback effect increased on the basis of aging time and then decreased due to intense aging of the alloy; an ideal time of 8 h is estimated for the Al 7050 alloy to carry out the CAF process. The research is limited to the use of the simplified model and its applicable results to Al 7050 alloys. Al 7050 is aligned with its vast use in the aeronautical industry, and the simplified model’s application may rapidly offer the necessary values of springback for the tooling project.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.