Abstract

Homeland security applications demand performant two-plane Compton-camera systems, with high detector efficiency, good nuclide identification and able to perform in-field conditions. A low-Z scintillator has been proposed and studied as a promising candidate for use in the scattering plane of a scintillator-based Compton camera: CaF2(Eu) [1]. All the relevant properties for the application of this scintillator in a mobile Compton camera system, have been addressed: the energy resolution and the non-proportionality at room temperature and in the temperature range of -20°C to +55°C, the photoelectron yield and the relative light yield in the relevant temperature range. A new method of inferring the relative light output of scintillators has been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call