Abstract

Cronobacter sakazakii is occasionally associated with food-borne illness seen in neonates and infants with weakened immune system. It can cause meningitis, local necrotizing enterocolitis and systemic bacteremia leading to infant mortality rates upto 33-80%. With the aim of investigating whether C. sakazakii is also a pathogen of the model organism C. elegans, we have performed killing assays and monitored the mortality of host fed with pathogen. C. elegans fed with C. sakazakii die over the course of several days, as a consequence of an accumulation of bacteria in the host intestine. Further, the rate of C. sakazakii mediated infection in C. elegans depends on the accumulation of the bacterial load inside the host. C. sakazakii killed C. elegans with an LT(50) (time for half to die) of 134 ± 2.8 h in liquid assay conditions, whereas the mortality of C. elegans infected with C. sakazakii was less pronounced during solid assays. We found that 24 h of C. sakazakii infection is enough to cause gametogenesis defects and increased cell damage in intestinal tract of host. To monitor the immune regulations during C. sakazakii infection in C. elegans at molecular level, total RNA was isolated and few candidate genes (lys-7, clec-60 and clec-87) were kinetically analyzed by using the semi-quantitative RT-PCR. The level of expression of lys-7, clec-60 and clec-87 mRNAs isolated from C. elegans infected with C. sakazakii was significantly higher when compared to C. elegans exposed to E. coli OP50 control. This is the first report in which physiological changes and an induction of host immunity mediated antimicrobial genes by C. sakazakii are shown in C. elegans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.