Abstract

The intestinal microbiome can influence the efficiency and the health status of its host’s digestive system. Indigestible non-starch polysaccharides (NSP) serve as substrates for bacterial fermentation, resulting in short-chain fatty acids like butyrate. In broiler’s nutrition, dietary crude protein (CP) and butyrate’s presence is of particular interest for its impact on intestinal health and growth performance. In this study, we evaluated the effect on the microbial ecology of the ceca of dietary supplementations, varying the cereal type (maize and wheat), adequate levels of CP and supplementation of sodium butyrate on broiler chickens with 21 days. The overall structure of bacterial communities was statistically affected by cereal type, CP, and sodium butyrate (p = 0.001). Wheat in the diet promoted the presence of Lactobacillaceae, Bifidobacteriaceae and Bacteroides xylanisolvens, which can degrade complex carbohydrates. Maize positively affected the abundance of Bacteroides vulgatus. The addition of CP promoted the family Rikenellaceae, while sodium butyrate as feed supplement was positively related to the family Lachnospiraceae. Functional predictions showed an effect of the cereal type and a statistical significance across all supplementations and their corresponding interactions. The composition of diets affected the overall structure of broilers’ intestinal microbiota. The source of NSP as a substrate for bacterial fermentation had a stronger stimulus on bacterial communities than CP content or supplementation of butyrate.

Highlights

  • Diet composition has a significant impact on poultry due to its influence on digestibility, gut wall morphology, and microbial structure, which might affect the health status, carcass composition and meat quality (Teirlynck et al, 2009)

  • This study aimed to describe the influence of two types of dietary cereals, two different crude protein contents, and butyrate supplementation on the cecal microbiota and its central metabolic functions in broiler chickens with 21 days

  • Crude protein content was set to an appropriate dietary phase [normal protein (NP)] or reduced by 15% [low protein (LP)], the latter supplemented with essential amino acids

Read more

Summary

Introduction

Diet composition has a significant impact on poultry due to its influence on digestibility, gut wall morphology, and microbial structure, which might affect the health status, carcass composition and meat quality (Teirlynck et al, 2009). NSPs have adverse effects on nutrient digestion and absorption (Meng et al, 2004; Lentle and Janssen, 2008; Teirlynck et al, 2009). Other cereal-based diets with higher amounts of NSPs, such as wheat, are supplemented with additive enzymes like xylanase and glucanase. This facilitates the degradation of NSPs and the release of carbon sources that promote a favorable bacterial population in the gastrointestinal tract (GIT; Lentle and Janssen, 2008). Fermentation products, like short-chain fatty acids (SCFA), are essential for the host metabolism and have positive effects on gut health

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call