Abstract
Accurate prediction of cadmium (Cd) ecotoxicity to and accumulation in soil biota is important in soil health. However, very limited information on Cd ecotoxicity on naturally contaminated soils. Herein, we investigated soil Cd ecotoxicity using Folsomia candida, a standard single-species test animal, in 28 naturally Cd-contaminated soils, and the back-propagation neural network (BPNN) model was used to predict Cd ecotoxicity to and accumulation in F. candida. Soil total Cd and pH were the primary soil properties affecting Cd toxicity. However, soil pH was the main factor when the total Cd concentration was < 3mgkg-1. Interestingly, correlation analysis and the K-spiked test confirmed nutrient potassium (K) was essential for Cd accumulation, highlighting the significance of studying K in Cd accumulation. The BPNN model showed greater prediction accuracy of collembolan survival rate (R2 = 0.797), reproduction inhibitory rate (R2 = 0.827), body Cd concentration (R2 = 0.961), and Cd bioaccumulation factor (R2 = 0.964) than multiple linear regression models. Then the developed BPNN model was used to predict Cd ecological risks in 57 soils in southern China. Compared to multiple linear regression models, the BPNN models can better identify high-risk regions. This study highlights the potential of BPNN as a novel and rapid tool for the evaluation and monitoring of Cd ecotoxicity in naturally contaminated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.